

Absolute Kinetics of Phenylchlorocarbene C-H Insertion Reactions

Robert A. Moss* and Shunqi Yan

Department of Chemistry, Rutgers, The State University of New Jersey, New Brunswick, New Jersey 08903

Received 11 September 1998; revised 2 October 1998; accepted 4 October 1998

Abstract. Absolute rate constants, activation parameters, a kinetic isotope effect, and hybrid density functional theory computational results are presented for various C-H insertion reactions of PhCCl. © 1998 Elsevier Science Ltd. All rights reserved.

The absolute kinetics of singlet carbene-alkene addition reactions have been intensively studied,¹ but much less is known about the kinetics of intermolecular singlet carbene C-H insertion reactions. Laser flash photolysis (LFP) provided aggregate rate constants for the presumed insertions of ArCCl with isooctane, cyclohexane, and *n*-hexane, but products were not characterized.² k_{abs} values were also determined for the reactions of PhCCl with Si-H, Sn-H and C-H bonds;^{3,4} the C-H substrates included cumene ($k_{abs} = 1.7 \times 10^5 \text{ M}^{-1} \text{ s}^{-1}$), ethylbenzene (8.2 x 10⁴ M⁻¹ s⁻¹), and toluene (7.5 x 10³ M⁻¹ s⁻¹).⁴

Here we report initial results from a broad study of PhCCl absolute insertion kinetics with a variety of C-H substrates. Taken together, absolute rate constants, activation parameters, kinetic isotope effects, and computational results provide a fuller portrait of this archetypal carbene reaction.⁵

PhCCl was generated photochemically¹ from phenylchlorodiazirine.⁶ Substrates included all-cis-1,3.5-trimethylcyclohexane (1, ChemsampCo), adamantane (2), cyclohexane (3), paraldehyde (4), and 2-methyl-1.3-dioxolane (5). Photolyses of concentrated solutions of the diazirine in benzene (A_{374} >3) with substrates 1, 2 and 5 afforded >90% yields of tertiary C-H insertion products, RCPhHCl, accompanied by lesser quantities of PhCCl dimer (\sim 3%) and azine (PhCCl=N-N=CClPh, \sim 2%). The insertion products were purified by chromatography, followed by recrystallization or preparative GC (SF-96, 150 °C); they were characterized by NMR, GC-MS, and elemental analysis. Insertion yields were lower with 3 and 4 (45-48%), where dimer (\sim 8%) and azine (\sim 46%) formation were dominant.

Absolute rate constants for the C-H insertions of PhCCl with substrates 1, 4, and 5 were determined by LFP⁷ at 351 nm of phenylchlorodiazirine in deaerated benzene (or pentane). PhCCl decay was monitored at 310 nm as a function of added substrate, and second order rate constants were derived from the slopes of the linear

(r>0.99) correlations of the observed pseudo-first-order rate constants for PhCCl decay with [substrate]. Traces of pentane insertion product(s) were detected when PhCCl was generated in a pentane solution of substrate 5. Results appear in Table 1. For less reactive substrates 3, 3- d_{12} , and 4, rate constants were determined by product-based relative reactivity experiments. These results also appear in Table 1.

The *tert*-C-H bonds of substrates 1 and 2 react with PhCCl with $k \sim 10^5$ M⁻¹ s⁻¹. They are about as reactive as the analogous cumyl C-H bond,⁴ but about 20 times less reactive than either the monoalkylated C=C of 1-hexene (2.2 x 10^6 M⁻¹ s⁻¹).⁸ or the Si-H bond of triethylsilane (2.5 x 10^6 M⁻¹ s⁻¹).⁴ However, despite the development of partial positive charge on the substrate carbon atom during C-H insertion,⁹ and the expectation that α -oxygens should assist insertion by resonance delocalization of that charge,^{5c,d} the *tert*-C-H of 5 is only about twice as reactive as those in 1 or 2, while the comparable C-H bond of paraldehyde (4) is an order of magnitude less reactive. LFP studies reveal the development of a strong absorbance at 485 nm during the PhCCl-4 reaction (100 times less intense in the PhCCl-5 reaction), suggesting an incursion of an *O*-ylide in the paraldehyde case.¹⁰ This could be responsible for the low C-H insertion efficiency. The *sec*-C-H bond of cyclohexane is about 15 times less reactive than the *tert*-C-H bond of 1. We found no evidence (GC, GC-MS) for PhCCl insertion into the unactivated primary C-H bonds of 1,3,5-tri-t-butylbenzene; only dimer and azine could be detected. Note that toluene reacts with PhCCl with $k = 7.5 \times 10^3$ M⁻¹ s⁻¹.⁴

Activation parameters were determined by LFP for PhCCl insertions with substrates 1 and 2 in benzene solvent. Rate constants were measured at 6 or 7 temperatures over ranges of 296—352 K (1) or 280-339 K (2); linear correlations (r > 0.99) of ln k vs. 1/T were obtained. Values of E_a and ΔS^{\ddagger} were 2.9 kcal/mol and -25.6 eu for 1, and 3.2 kcal/mol and -24.2 eu for 2. These may be compared with the activation parameters for PhCCl insertion into Et₃Si-H (2.8 kcal/mol and -12.8 eu)³ or addition to 1-hexene (1.1 kcal/mol and -27 eu). The ΔS^{\ddagger} values for C-H insertions are quite negative and similar to those for PhCCl/C=C additions, largely

Table 1. Kinetics of PhCCl C-H Insertion Reactions in Benzene at 23 °C

substrate	$10^{-5} k_{\rm abs}, {\rm M}^{-1} {\rm s}^{-1} {\rm a}$	$10^{-5} k_{\rm calcd}, {\rm M}^{-1} {\rm s}^{-1} {\rm b}$	$10^{-5} k_{per H}, M^{-1} s^{-1 c}$
1	2.87		0.96
2	5.02 (11.7) ^d		1.26
5	2.38 (4.22) ^{d,c}		2.38
3		$0.75^{\rm f}$	0.062^{g}
3-d ₁₂		0.20^{h}	
4		0.32^{i}	0.11

^aBy LFP. ^bBy relative (competitive) kinetics. ^cCorrected for the number of reactive C-H bonds. ^dIn pentane. ^cA trace of PhCCl-pentane insertion product(s) was formed. ^fBy competition of substrates 1 and 3; $k(1)/k(3) = 3.83 \pm 0.11$. ^gCorrected for 12 C-H bonds; ab initio calculations indicate that activation energies for axial and equatorial PhCCl insertion reactions differ by only 0.2 kcal/mol. ^hBy competition of substrates 3 and 3- d_{12} ; $k_{rel} = 3.79 \pm 0.08$. ⁱBy competition of substrates 5 and 4; $k_{rel} = 7.41 \pm 0.02$.

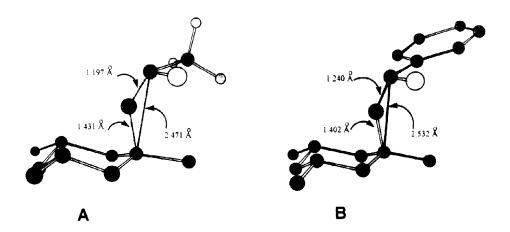


Figure 1. Calculated (B3LYP/6-31G*), fully optimized transition states for C-H insertions of (A) MeCCl and (B) PhCCl with substrate 1. Except for the target C-H bond, substrate (and phenyl) H atoms are omitted.

reflecting the entropy decrease that occurs when 2 reactant molecules combine to form a single product molecule. 1,11,12

We also find (Table 1) that PhCCl insertions into the *tert*-C-H bonds of 2 and 5 are about twice as fast in pentane as they are in benzene, which we attribute to selective stabilization of the carbene's ground state by π -complexation in benzene. Independent evidence for such complexation has recently appeared.¹³

From the relative reactivity of PhCCl with cyclohexane and cyclohexane- d_{12} (Table 1), the primary kinetic isotope effect (KIE) for sec-C-H/C-D insertion is ~3.8 at 23 °C. Literature comparisons include KIE's for CCl₂ insertions into the tert-C-H/C-D bonds of cumene (2.6 at 120 °C), ⁹ 2-phenyl-1,3-dioxolane (2.77 at 0 °C), ^{5c} and 2-phenylbutane (2.5 at 80 °C). ^{5b} Conceivably, the larger KIE observed for PhCCl/cyclohexane insertion reflects the less reactive sec-C-H(C-D) bond, which engenders a "later," more "bond-broken" transition state and a greater KIE. Ab initio calculations do indicate significant C-H bond stretching and charge development in these reactions.

The B3LYP hydrid density functional theory method was used as contained in the Gaussian 94 package. Extensive study of the MeCCl-1 C-H insertion afforded the B3LYP/6-31G* transition state (TS) A (see Figure 1), which was used as a starting point for the derivation of B3LYP/6-31G* TS B for PhCCl-1 insertion. Transition states were confirmed by frequency calculations and only 1 negative frequency was obtained in each case; B3LYP/6-31G* results follow.

For **B**, the E_a (with zero point energy correction) is calculated as 7.1 kcal/mol and ΔS^4 as -39.8 eu. These values differ significantly from the experimental data (2.9 kcal/mol and -25.6 eu), although trends within the computational results are sensible. Thus, E_a 's for C-H insertions with **1** are MeCCl, 5.4; PhCCl, 7.1; and CCl₂, 11.2 kcal/mol, increasing with increasing carbene stablity. Also, computed E_a 's increase as anticipated for insertions into the (axial) sec-C-H bonds of 3: MeCCl, 7.1; PhCCl, 10.8; and CCl₂, 14.1 kcal/mol (no zero

point energy correction).¹⁶ The (uncorrected) E_a 's computed for PhCCl insertions into the axial or equatorial C-H bonds of 3 are nearly identical, 10.77 and 10.96 kcal/mol, respectively, so that we divide by 12 rather than 6 to put the aggregate cyclohexane insertion rate constant on a per-bond basis.¹⁷

In the computed PhCl-1 TS (Fig. 1, B), the target C-H bond has been stretched from 1.10 to 1.40 Å, and bonding to the carbonic carbon is well-established at a separation of 1.24 Å. A similar situation prevails in the PhCCl-3 TS, consistent with the substantial observed primary KIE (3.8) for C-H/C-D insertion of PhCCl.

Finally, the significant C-C separation of 2.53 Å between substrate and carbene carbons in the PhCCl-1 insertion TS is mirrored in the respective computed charges (NBO analysis) on these atoms of +0.22 and -0.20, respectively. The partial positive charge on the substrate carbon accords with experimental observations. 56.9

Acknowledgments. We thank Professor Karsten Krogh-Jespersen for helpful discussions, Ms. Dina Merrer and Ms. Lauren Johnson for assistance with the LFP experiments, and the National Science Foundation for financial support.

References and Notes

- (1) Review: Moss, R.A.; Turro, N.J. in *Kinetics and Spectroscopy of Carbenes and Biradicals*, Platz, M.S., Ed., New York: Plenum Press, 1990, pp. 213f.
- (2) Bonneau, R.; Liu, M.T.H. J. Photochem. Photobiol. A: Chem. 1992, 68, 97.
- (3) Jackson, J.E.; Soundararajan, N.; Platz, M.S.; Doyle, M.P.; Liu, M.T.H. Tetrahedron Lett. 1989, 30, 1335.
- (4) Doyle, M.P.; Taunton, J.; Oon, S-M.; Liu, M.T.H.; Soundararajan, N.; Platz, M.S.; Jackson, J.E. *Tetrahedron Lett.* 1988, 29, 5863.
- (5) Singlet carbene C-H insertions can be efficient. For examples form CCl₂ chemistry, see (a) Tabushi, I.; Yoshida Z-i; Takahashi, N. J. Am. Chem. Soc. 1970, 92, 6670. (b) Seyferth, D.; Cheng, Y-M. Ibid. 1973, 95, 6763. (c) Steinbeck, K.; Klein, J. J. Chem. Res. (S) 1980, 94. Steinbeck, K. Chem. Ber. 1979, 112, 2402. (d) Likhotvorik, I.R.; Yuan, K.; Brown, D.W.; Krasutsky, P.A.; Smyth, N.; Jones, M., Jr. Tetrahedron Lett. 1992, 33, 911.
- (6) Graham, W.H. J. Am. Chem. Soc. 1965, 87, 4396.
- (7) Moss, R.A.; Xue, S.; Liu, W.; Krogh-Jespersen, K. J. Am. Chem. Soc. 1996, 118, 12588.
- (8) Cox, D.P.; Gould, I.R.; Hacker, N.P.; Moss, R.A.; Turro, N.J. Tetrahedron Lett. 1983, 24, 5313.
- (9) Pascal, R.A., Jr.; Mischke, S. J. Org. Chem. 1991, 56, 6954.
- (10) For a review of O-ylide formation in carbene reactions, see Padwa, A.; Hornbuckle, S.F. Chem. Rev. 1991, 91, 263.
- (11) Moss, R.A.; Lawrynowicz, W.; Turro, N.J.; Gould, I.R.; Cha, Y. J. Am. Chem. Soc. 1986, 108, 7028.
- (12) See Houk, K.N.; Rondan, N.G.; Mareda, J. Tetrahedron 1985, 41, 1555, and references cited therein.
- (13) Moss, R.A.; Yan, S.; Krogh-Jespersen, K. J. Am. Chem. Soc. 1998, 120, 1088. Ruck, R.T.; Jones, M., Jr.; Tetrahedron Lett. 1998, 39, 2277.
- (14) GAUSSIAN 94, Revision E.2, Gaussian, Inc., Pittsburgh, PA., 1995.
- (15) Rondan, N.G.; Houk, K.N.; Moss, R.A. J. Am. Chem. Soc. 1980, 102, 1770. Moss, R.A. Acc. Chem. Res. 1980, 13, 58.
- With or without zero point energy corrections, insertions into the *tert*-C-H of 1 are 1-2 kcal/mol lower in E_a than the analogous reactions with the *sec*-C-H of 3 for all 3 carbenes.
- (17) Interestingly, the eq>ax kinetic advantage observed^{5d} for CCl_2 insertions into the *tert*-C-H bonds of the 4-t-butyl-1-methylcyclohexane isomers is reflected in the B3LYP/6-31G* calculations, where E_a 's for CCl_2 insertions into the eq and ax *tert*-C-H bonds of methylcyclohexane are computed as 10.6 and 12.1 kcal/mol, respectively.